Search results for "Protein aggregation"
showing 10 items of 128 documents
Synergistic activation of AMPK prevents from polyglutamine-inducedtoxicity inCaenorhabditis elegans
2020
11 páginas, 4 figuras. Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.phrs.2020.105105.
Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution
2016
The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-pho…
Toxic Tau Oligomers Modulated by Novel Curcumin Derivatives
2019
AbstractThe pathological aggregation and accumulation of tau, a microtubule-associated protein, is a common feature amongst more than 18 different neurodegenerative diseases that are collectively known as tauopathies. Recently, it has been demonstrated that the soluble and hydrophobic tau oligomers are highly toxic in vitro due to their capacity towards seeding tau misfolding, thereby propagating the tau pathology seen across different neurodegenerative diseases. Modulating the aggregation state of tau oligomers through the use of small molecules could be a useful therapeutic strategy to target their toxicity, regardless of other factors involved in their formation. In this study, we screen…
Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43
2018
Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was coll…
Causes and consequences of DNA damage-induced autophagy.
2021
Abstract Autophagy is a quality control pathway that maintains cellular homeostasis by recycling surplus and dysregulated cell organelles. Identification of selective autophagy receptors demonstrated the existence of pathways that selectively degrade organelles, protein aggregates or pathogens. Interestingly, different types of DNA damage can induce autophagy and autophagy-deficiency leads to genomic instability. Recent studies provided first insights into the pathways that connect autophagy with the DNA damage response. However, the physiological role of autophagy and the identity of its targets after DNA damage remain enigmatic. In this review, we summarize recent literature on the target…
Skeletal muscle-specific methyltransferase METTL21C trimethylates p97 and regulates autophagy-associated protein breakdown
2018
Summary: Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a β-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c−/− muscles. In addition, w…
Proinflammatory and amyloidogenic S100A9 induced by traumatic brain injury in mouse model.
2019
Traumatic brain injury (TBI) represents a significant risk factor for development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The S100A9-driven amyloid-neuroinflammatory cascade occurring during primary and secondary TBI events can serve as a mechanistic link between TBI and Alzheimer’s as demonstrated recently in the human brain tissues. Here by using immunohistochemistry in the controlled cortical impact TBI mouse model we have found pro-inflammatory S100A9 in the brain tissues of all mice on the first and third post-TBI days, while 70% of mice did not show any S100A9 presence on seventh post-TBI day similar to controls. This indicates that defensive mechanisms effe…
Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers
2016
The subtle interplay between long range electrostatic forces, hydrophobic interactions and short range protein-protein interactions regulates the onset/evolution of protein aggregation processes as well as the stability of protein supramolecular structures. Using a combination of FTIR spectroscopy, light scattering and advanced imaging, we present evidence on the main role of electrostatic forces in the formation and stability of amyloid-like fibrils formed from concanavalin A (ConA), a protein showing structural homology with the human serum amyloid protein. At high protein concentration, where protein-protein interactions cannot be neglected, we highlight a thermal-induced aggregation pat…
2017
Proteins containing glutamine repeats (polyQ) are known to be structurally unstable. Abnormal expansion of polyQ in some proteins exceeding a certain threshold leads to neurodegenerative disease, a symptom of which are protein aggregates. This has led to extensive research of the structure of polyQ stretches. However, the accumulation of contradictory results suggests that protein context might be of importance. Here we aimed to evaluate the structural context of polyQ regions in proteins by analysing the secondary structure of polyQ proteins and their homologs. The results revealed that the secondary structure in polyQ vicinity is predominantly random coil or helix. Importantly, the region…
2017
Human neurodegenerative diseases are accompanied by accumulation of heavily oxidized and aggregated proteins. However, the exact molecular reason is not fully elucidated yet. Insufficient cellular protein quality control is thought to play an important role in accumulating covalently oxidized misfolded proteins. Pharmacologically active polyphenols and their derivatives exhibit potential for preventive and therapeutic purposes against protein aggregation during neurodegeneration. Although these compounds act on various biochemical pathways, their role in stabilizing the protein degradation machinery at different stages may be an attractive therapeutical strategy to halt the accumulation of …